A  B  C  D  E  F  G  H  I  J  K  L  Ł  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
Naess, Arne
Four modern philosophers. Carnap, Wittgenstein, Heidegger, Sartre
Translated by Alastair Hannay. The University of Chicago Press, Chicago & London 1968.
Oryg. Moderne filosofer, Almquist & Wiksell/Gebers Förlag AB Stockholm.
Nagel, Ernest
Struktura nauki
PWN, Warszawa 1970.
Natorp, Paul
Die logische Grundlagen der exakten Wissenschaften
B. G. Teubner, Leipzig and Berlin, 1910.
Stron xx + 416.
Natucci Alpinolo
Il concetto di numero e le sue estensioni : studi storico-critici intorno ai fondamenti dell'aritmetica generale con oltre 700 indicazioni bibliografiche
Fratelli Bocca, Torino 1923.
Stron 474.
Neemann, Ursula
Über die strukturelle Verwandtschaft zwischen Nominalismus und Platonismus
W: Abstracts of the 7th International Congress of Logic, Methodology and Philosophy of Science, SSalzburg, July 11th-16th, 1983, Volume 6: Abstracts of Sections 13 and 14, compiled by Georg Dorn, J. Huttegger OHG, Salzburg 1983, s. 150-152.
Neumann, Johann von
Eine Axiomatisierung der Mengenlehre
"Journal für die reine und angewandte Mathematik" 154 (1925), s. 219-240.
Cf. Berichtigung, "Journal für die reine und angewandte Mathematik" 155 (1925), s. 128.
Zur Hilbertschen Beweistheorie
"Mathematische Zeitschrift" 26 (1927), s. 1-46.
Über die Definition durch transfinite Induktion und verwandte Fragen der allgemeinen Mengenlehre
"Mathematische Annalen" 99 (1928), s. 373-391.
Mathematische Grundlagen der Quantenmechanik
J. Springer, Berlin, 1932
Dover Publications, New York, 1943; Presses Universitaires de France, 1947; Instituto de Mathematicas "Jorge Juan," Madrid, 1949; Translation from German ed. by Robert T. Beyer, Princeton University Press, 1955.
The mathematician
W: The works of the mind, R. B. Heywood (ed.), University of Chicago Press, vol. 1, 1947, no. 1.
The formalist foundations of mathematics
W: Philosophy of mathematics, selected readings, edited and with an introduction by Paul Benacerraf and Hilary Putnam, Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1964, s. 50-54.
[ von NEUMANN [1] ] N ] Oryg. Die formalistische Grundlegung der Mathematik, "Erkenntnis" 2 (1931), s. 116-121.
Collected works
6 vols, Taub, A. H. (ed.), Pergamon Press, Oxford 1961-1963.
Neumann, Johann von, Morgenstern, Oskar
Theory of games and economic behavior
With an introduction by Harold Kuhn and an afterword by Ariel Rubinstein,Princeton University Press, Princeton 2007.
Wyd. oryg. 1944.
Newman, James (współautor)
Mathematics and the imagination
Simon and Schuster,New York 1940.
Autorzy: Edward Kasner, James Newman.
Newsom, Carroll V. (współautor)
An introduction to the foundations and fundamental concepts of mathematics
Holt, Rinehart, and Winston, New York 1958.
Autorzy: Howard Whitley Eves, Carroll V. Newsom
Nicod, Jean
La géométrie dans le monde sensible
Presses Universitaires de France, Paris 1962.
Pierwsze wydanie Alcan, Paris 1924.
Le problème logique de l'induction
Félix Alcan, Paris 1924.
Nidditch, Peter
The development of mathematical logic
The Free Press of Glencoe, New York 1962.
Peano and the recognition of Frege
"Mind", 72 (1963), pp. 103-110.
Nieland, J. J. F.
Beth's tableau-method
W: E. W. Beth Memorial Colloquium. Logic and Foundations of Science, Paris, Institut Henri Poincaré, 19-21 May, 1964, edited by Jean-Louis Destouches, Reidel, Dordrecht-Holland 1967, s. 19-38.
[ = | ^ ] An exposition of the tableau-method and some ideas on its further development.
Nola Robert
Recenzja z Jeremy D. B. Walker, A study of Frege
"Philosophical Studies" 15 (1966), s. 327-329.
Re: Jeremy D. B. WalkerA study of Frege, Basil Blackwell, Oxford 1965.
Nolt, John E.
Mathematical intuition
"Philosophy and Phenomenological Research" 44 (1983), s. 189-211.
Początek artykułu: "Philosophers and mathematicians have frequently suggested that we have an ability to intuit mathematical objects in something like the way in which we perceive physical ones. I would like to examine this suggestion, in a naive way at first, and subsequently in the light of more sophisticated treatments by Robert Tragesser, Mark Steiner, and Edmund Husserl. I hope to make plausible my own theory that so-called "mathematical intuition" is not a unique mode of percetion with its own peculiar domain of objects, but rather a way of conceptualizing what we ordinarily see or imagine" (s. 189)
Noonan, Harold
Fregean Thoughts
"The Philosophical Quarterly" 34 (1984), s. 205-224.
[ K ]
Nordmann, Charles
Henri Poincaré. Son oeuvre scientifique, sa philosophie
"Revue de deux Mondes", 86, 2, t. 11, 1912, s. 331-368.
[ NORDMANN [1] ]
Nusenoff, Ronald E.
Frege on identity sentences
"Philosophy and Phenomenological Research" 39 (1979), s. 438-492.
Początek artykułu: "Frege's explanation of the cognitive value of identity sentences, as found in 'On Sense and Reference', is still a starting point for much contemporary discussion in the philosophy of language. It is therefore surprising how poorly Frege's explanation has been appreciated. In what follows, I will set out what I take to be the most reasonable interpretation of that explanation". (s. 438)